3.120 \(\int \frac{(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=164 \[ -\frac{(43 A-3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

(2*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) - ((43*A - 3*B)*ArcTanh[(Sqrt[a]*Si
n[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B)*Sin[c + d*x])/(4*d*(a + a*C
os[c + d*x])^(5/2)) - ((11*A - 3*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.465548, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {2978, 2985, 2649, 206, 2773} \[ -\frac{(43 A-3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac{(A-B) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(2*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) - ((43*A - 3*B)*ArcTanh[(Sqrt[a]*Si
n[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B)*Sin[c + d*x])/(4*d*(a + a*C
os[c + d*x])^(5/2)) - ((11*A - 3*B)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{(A+B \cos (c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac{\int \frac{\left (4 a A-\frac{3}{2} a (A-B) \cos (c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{\left (8 a^2 A-\frac{1}{4} a^2 (11 A-3 B) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac{A \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx}{a^3}-\frac{(43 A-3 B) \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac{(2 A) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}+\frac{(43 A-3 B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{2 A \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{5/2} d}-\frac{(43 A-3 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(A-B) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac{(11 A-3 B) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.37921, size = 126, normalized size = 0.77 \[ \frac{\tan \left (\frac{1}{2} (c+d x)\right ) ((3 B-11 A) \cos (c+d x)-15 A+7 B)-2 (43 A-3 B) \cos ^3\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+64 \sqrt{2} A \cos ^3\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )}{16 a d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(43*A - 3*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^3 + 64*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]
*Cos[(c + d*x)/2]^3 + (-15*A + 7*B + (-11*A + 3*B)*Cos[c + d*x])*Tan[(c + d*x)/2])/(16*a*d*(a*(1 + Cos[c + d*x
]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 4.747, size = 445, normalized size = 2.7 \begin{align*}{\frac{1}{32\,d}\sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -43\,A\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+3\,B\ln \left ( 2\,{\frac{2\,\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) \sqrt{2} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+32\,A\ln \left ( -4\,{\frac{a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2}}} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a+32\,A\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}a-11\,A\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+3\,B\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,A\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,B\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \right ){a}^{-{\frac{7}{2}}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*a)^(5/2),x)

[Out]

1/32*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-43*A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2
*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+3*B*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c)
)*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+32*A*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c
)^2)^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^4*a+32*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2)
)*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^4*a-11
*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)^2+3*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1
/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2-2*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*B*2^(1/2)*(a*sin(1/2*d*x
+1/2*c)^2)^(1/2)*a^(1/2))/a^(7/2)/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.91114, size = 902, normalized size = 5.5 \begin{align*} -\frac{\sqrt{2}{\left ({\left (43 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (43 \, A - 3 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (43 \, A - 3 \, B\right )} \cos \left (d x + c\right ) + 43 \, A - 3 \, B\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 32 \,{\left (A \cos \left (d x + c\right )^{3} + 3 \, A \cos \left (d x + c\right )^{2} + 3 \, A \cos \left (d x + c\right ) + A\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left ({\left (11 \, A - 3 \, B\right )} \cos \left (d x + c\right ) + 15 \, A - 7 \, B\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/64*(sqrt(2)*((43*A - 3*B)*cos(d*x + c)^3 + 3*(43*A - 3*B)*cos(d*x + c)^2 + 3*(43*A - 3*B)*cos(d*x + c) + 43
*A - 3*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d
*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 32*(A*cos(d*x + c)^3 + 3*A*cos(d*x + c)^2 + 3*A*cos(d*
x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x +
 c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*((11*A - 3*B)*cos(d*x + c) + 15*A - 7*B)*s
qrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) +
a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 3.28883, size = 338, normalized size = 2.06 \begin{align*} -\frac{2 \, \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}{\left (\frac{2 \, \sqrt{2}{\left (A a^{5} - B a^{5}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a^{8}} + \frac{\sqrt{2}{\left (13 \, A a^{5} - 5 \, B a^{5}\right )}}{a^{8}}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \frac{\sqrt{2}{\left (43 \, A \sqrt{a} - 3 \, B \sqrt{a}\right )} \log \left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{3}} - \frac{64 \, A \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right )}{a^{\frac{5}{2}}} + \frac{64 \, A \log \left ({\left |{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right )}{a^{\frac{5}{2}}}}{64 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/64*(2*sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 - B*a^5)*tan(1/2*d*x + 1/2*c)^2/a^8 + sqrt(2)*(1
3*A*a^5 - 5*B*a^5)/a^8)*tan(1/2*d*x + 1/2*c) - sqrt(2)*(43*A*sqrt(a) - 3*B*sqrt(a))*log((sqrt(a)*tan(1/2*d*x +
 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a^3 - 64*A*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan
(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/a^(5/2) + 64*A*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(
a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/a^(5/2))/d